miércoles, 28 de octubre de 2009
CIRCUITO INTEGRADO 7400
Serie 7400
El chip 7400, contiene cuatro NANDs. La segunda línea de números pequeños (7645) es un código de fecha, este chip fue manufacturado en la semana 45 de 1976. El sufijo N en el número de parte indica un empaquetado PDIP.
Por serie 7400 se conoce a los circuitos integrados digitales, originalmente fabricados en tecnología TTL (lógica transistor-transistor o en inglés transistor-transistor logic), que forman una subfamilia de semiconductores, dentro del campo de la electrónica digital. Fueron ampliamante utilizados en la década de 1960 y 1970 para construir computadoras. Actualmente existen versiones de la serie fabricadas con tecnología CMOS.
Características generales
Las características destacables de estos componentes son las siguientes:
Tensión de alimentación: 5 V, con una tolerancia (de 4,5 V a 5,5 V).
Niveles lógicos: entre 0,2 V y 0,8 V para el nivel bajo (L) y entre 2,4 V y 5 V para el nivel alto (H), ya que estos chips son activados por altos y bajos, o también llamados 0 y 1, dígitos del sistema binario utilizados para estos usos en la electrónica.
Código identificador: el 74 para los comerciales y el 54 para los de diseño militar. Estos últimos son chips más desarrollados, ya que los de serie 74 soportan menos rangos de temperaturas.
Temperatura de trabajo: de 0 °C a 70 °C para la serie 74 y de -55º hasta los 125 °C para la 54.
El chip 7400, contiene cuatro NANDs. La segunda línea de números pequeños (7645) es un código de fecha, este chip fue manufacturado en la semana 45 de 1976. El sufijo N en el número de parte indica un empaquetado PDIP.
Por serie 7400 se conoce a los circuitos integrados digitales, originalmente fabricados en tecnología TTL (lógica transistor-transistor o en inglés transistor-transistor logic), que forman una subfamilia de semiconductores, dentro del campo de la electrónica digital. Fueron ampliamante utilizados en la década de 1960 y 1970 para construir computadoras. Actualmente existen versiones de la serie fabricadas con tecnología CMOS.
Características generales
Las características destacables de estos componentes son las siguientes:
Tensión de alimentación: 5 V, con una tolerancia (de 4,5 V a 5,5 V).
Niveles lógicos: entre 0,2 V y 0,8 V para el nivel bajo (L) y entre 2,4 V y 5 V para el nivel alto (H), ya que estos chips son activados por altos y bajos, o también llamados 0 y 1, dígitos del sistema binario utilizados para estos usos en la electrónica.
Código identificador: el 74 para los comerciales y el 54 para los de diseño militar. Estos últimos son chips más desarrollados, ya que los de serie 74 soportan menos rangos de temperaturas.
Temperatura de trabajo: de 0 °C a 70 °C para la serie 74 y de -55º hasta los 125 °C para la 54.
CIRCUITO INTEGRADO 555
El circuito integrado 555 es un circuito integrado de bajo costo y de grandes prestaciones. Inicialmente fue desarrollado por la firma Signetics. En la actualidad es construido por muchos otros fabricantes. Entre sus aplicaciones principales cabe destacar las de multivibrador estable (dos estados metaestables) y monoestable (un estado estable y otro metaestable), detector de impulsos, etcétera.
Este Circuito Integrado (C.I.) es para los experimentadores y aficionados, un dispositivo barato con el cual pueden hacer muchos proyectos. Este temporizador es tan versátil que se puede utilizar para modular una señal en Amplitud Modulada (A.M.)
Está constituido por una combinación de comparadores lineales, flip-flops (biestables digitales), transistor de descarga y excitador de salida.
Está constituido por una combinación de comparadores lineales, flip-flops (biestables digitales), transistor de descarga y excitador de salida.
TEMPORIZADOR
TEMPORIZADOR
Los temporizadores así como su nombre lo dice son mecanismos que funcionan o hacen una operación por cierto tiempo donde el tiempo es ajustado de acuerdo del uso dado. Entre estos existen pequeños dentro de un integrado o grande para potencia en fin digitales o no llevan los mismos implementos básicos.
En este informe te presento algunos ejemplos donde se utilizan de acuerdo a su uso y para que uso. Estos son unos de presentaciones hechas donde cada una fue probada tanto en computadora y en plantilla. Al igual que debes hacerlo tu. Entre los ejemplos tenemos:
APAGADO AUTOMATICO PARA MOTOR DISSEL CON BOMBA MECANICA
RELAY INTERMITENTE PARA JUEGO DE LUCES
MICRO TEMPORIZADOR
martes, 27 de octubre de 2009
NOR
COMPUERTA LÓGICA
Compuerta NOR: La compuerta NOR es el complemento de la compuerta OR y utiliza el símbolo de la compuerta OR seguido de un círculo pequeño (quiere decir que invierte la señal). Las compuertas NOR pueden tener más de dos entradas, y la salida es siempre el complemento de la función OR.
NAND
COMPUERTA LÓGICA
Compuerta NAND: Es el complemento de la función AND, como se indica por el símbolo gráfico, que consiste en una compuerta AND seguida por un pequeño círculo (quiere decir que invierte la señal).La designación NAND se deriva de la abreviación NOT - AND. Una designación más adecuada habría sido AND invertido puesto que es la función AND la que se ha invertido.Las compuertas NAND pueden tener más de dos entradas, y la salida es siempre el complemento de la función AND.
COMPUERTAS LOGICAS
COMPUERTAS LÓGICA NOT Y SEPARADOR
Compuerta NOT:El circuito NOT es un inversor que invierte el nivel lógico de una señal binaria. Produce el NOT, o función complementaria. El símbolo algebraico utilizado para el complemento es una barra sobra el símbolo de la variable binaria. Si la variable binaria posee un valor 0, la compuerta NOT cambia su estado al valor 1 y viceversa. El círculo pequeño en la salida de un símbolo gráfico de un inversor designa un inversor lógico. Es decir cambia los valores binarios 1 a 0 y viceversa.
Compuerta Separador (yes): Un símbolo triángulo por sí mismo designa un circuito separador, el cual no produce ninguna función lógica particular puesto que el valor binario de la salida es el mismo de la entrada. Este circuito se utiliza simplemente para amplificación de la señal. Por ejemplo, un separador que utiliza 5 volt para el binario 1, producirá una salida de 5 volt cuando la entrada es 5 volt. Sin embargo, la corriente producida a la salida es muy superior a la corriente suministrada a la entrada de la misma.De ésta manera, un separador puede excitar muchas otras compuertas que requieren una cantidad mayor de corriente que de otra manera no se encontraría en la pequeña cantidad de corriente aplicada a la entrada del separador.
OR
COMPUERTAS LÓGICA OR:
La compuerta OR produce la función sumadora, esto es, la salida es 1 si la entrada A o la entrada B o ambas entradas son 1; de otra manera, la salida es 0. El símbolo algebraico de la función OR (+), es igual a la operación de aritmética de suma. Las compuertas OR pueden tener más de dos entradas y por definición la salida es 1 si cualquier entrada es 1.
AND
COMPUERTAS LÓGIC AND
Cada compuerta tiene dos variables de entrada designadas por A y B y una salida binaria designada por x. La compuerta AND produce la multiplicación lógica AND: esto es: la salida es 1 si la entrada A y la entrada B están ambas en el binario 1: de otra manera, la salida es 0. Estas condiciones también son especificadas en la tabla de verdad para la compuerta AND. La tabla muestra que la salida x es 1 solamente cuando ambas entradas A y B están en 1.El símbolo de operación algebraico de la función AND es el mismo que el símbolo de la multiplicación de la aritmética ordinaria (*).Las compuertas AND pueden tener más de dos entradas y por definición, la salida es 1 si todas las entradas son 1.
Cada compuerta tiene dos variables de entrada designadas por A y B y una salida binaria designada por x. La compuerta AND produce la multiplicación lógica AND: esto es: la salida es 1 si la entrada A y la entrada B están ambas en el binario 1: de otra manera, la salida es 0. Estas condiciones también son especificadas en la tabla de verdad para la compuerta AND. La tabla muestra que la salida x es 1 solamente cuando ambas entradas A y B están en 1.El símbolo de operación algebraico de la función AND es el mismo que el símbolo de la multiplicación de la aritmética ordinaria (*).Las compuertas AND pueden tener más de dos entradas y por definición, la salida es 1 si todas las entradas son 1.
CIRCUITO
Circuito serie
El circuito serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptor, entre otros.)
se conectan secuencialmente. El terminal de salida de un dispositivo se conecta al terminal de entrada del dispositivo siguiente, por ejemplo, el terminal positivo de una pila eléctrica se conecta al terminal negativo de la pila siguiente, con lo cual entre los terminales extremos de la asociación se tiene una diferencia de potencial igual a la suma de la de ambas pilas. Esta conexión de pilas eléctricas en serie da lugar a la formación de una batería eléctrica.
Cabe anotar que la corriente que circula en un circuito serie es la misma en todos los puntos del circuito. A modo de ejemplo, en la siguiente figura se muestran varios condensadores en serie y el valor del condensador equivalente:
OHM
Ley de Ohm
Circuito mostrando la Ley de Ohm: Una fuente eléctripotencial. V, produce una corriente eléctrica I cuando pasa a través de la resistencia R
La Ley de Ohm establece que "La intensidad de la corriente eléctrica que circula por un conductor eléctrico es directamente proporcional a la diferencia de potencial aplicada e inversamente proporcional a la resistencia del mismo", se puede expresar matemáticamente en la siguiente ecuación:
Donde, empleando unidades del Sistema internacional, tenemos que:
I = Intensidad en amperios (A)
V = Diferencia de potencial en voltios (V)
R = Resistencia en ohmios (Ω).
Esta ley no se cumple, por ejemplo, cuando la resistencia del conductor varía con la temperatura, y la temperatura del conductor depende de la intensidad de corriente y el tiempo que esté circulando.
La ley define una propiedad específica de ciertos materiales por la que se cumple la relación:
Un conductor cumple la Ley de Ohm sólo si su curva V-I es lineal, esto es si R es independiente de V y de I.
En un conductor recorrido por una corriente eléctrica, el cociente entre la diferencia de potencial aplicada a los extremos del conductor y la intensidad de la corriente que por él circula es una cantidad constante, que depende del conductor. A esta cantidad se le denomina resistencia.
La ley enunciada verifica la relación entre voltaje de la red y corriente en un resistor.
Historia
Como resultado de su investigación, en la que experimentaba con materiales conductores, el científico alemán George Simon Ohm llegó a determinar que la relación entre voltaje y corriente era constante y nombró a esta constante resistencia.
Esta ley fue formulada por George Simon Ohm en 1827, en la obra Die galvanische Kette, mathematisch bearbeitet (Trabajos matemáticos sobre los circuitos eléctricos), basándose en evidencias empíricas. La formulación original es:
Siendo la densidad de la corriente, σ la conductividad eléctrica y el campo eléctrico, sin embargo se suele emplear las fórmulas simplificadas anteriores para el análisis de los circuitos.
Comportamientos ideal y real
Circuito con resistencia.
Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:
Donde i (t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.
Comportamiento en corriente continua
Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:
RESISTENCIA
Resistencia eléctrica
Se denomina resistencia eléctrica, simbolizada habitualmente como R, a la dificultad u oposición que presenta un cuerpo al paso de una corriente eléctrica para circular a través de él. En el Sistema Internacional de Unidades, su valor se expresa en ohmios, que se designa con la letra griega omega mayúscula, Ω. Para su medida existen diversos métodos, entre los que se encuentra el uso de un ohmímetro.
Esta definición es válida para la corriente continua y para la corriente alterna cuando se trate de elementos resistivos puros, esto es, sin componente inductiva ni capacitiva. De existir estos componentes reactivos, la oposición presentada a la circulación de corriente recibe el nombre de impedancia.
Según sea la magnitud de esta oposición, las sustancias se clasifican en conductoras, aislantes y semiconductoras. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.
Comportamientos ideal y real
Circuito con resistencia.
Una resistencia ideal es un elemento pasivo que disipa energía en forma de calor según la ley de Joule. También establece una relación de proporcionalidad entre la intensidad de corriente que la atraviesa y la tensión medible entre sus extremos, relación conocida como ley de Ohm:
Donde i (t) es la corriente eléctrica que atraviesa la resistencia de valor R y u(t) es la diferencia de potencial que se origina. En general, una resistencia real podrá tener diferente comportamiento en función del tipo de corriente que circule por ella.
Comportamiento en corriente continua
Una resistencia real en corriente continua (CC) se comporta prácticamente de la misma forma que si fuera ideal, esto es, transformando la energía eléctrica en calor por efecto Joule. La ley de Ohm para corriente continua establece que:
POTENCIAL ELECTRICO
Potencial eléctrico
El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica para mover una carga positiva q desde la referencia hasta ese punto, dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde la referencia hasta el punto considerado en contra de la fuerza eléctrica, dividido por esa carga. Matemáticamente se expresa por:
Considérese una carga de prueba positiva, la cual se puede utilizar para hacer el mapa de un campo eléctrico. Para tal carga de prueba localizada a una distancia r de una carga q, la energía potencial electrostática mutua es:
Trabajo eléctrico y energía potencial eléctrica
Considérese una carga puntual q en presencia de un campo eléctrico. La carga experimentará una fuerza eléctrica.
Ahora bien, si se pretende mantener la partícula en equilibrio, o desplazarla a velocidad constante, se requiere de una fuerza que contrarreste el efecto de la generada por el campo eléctrico. Esta fuerza deberá tener la misma magnitud que la primera, pero sentido contrario, es decir:
(1)
Partiendo de la definición clásica de trabajo, en este caso se realizará un trabajo para trasladar la carga de un punto a otro.De tal forma que al producirse un pequeño desplazamiento dl se generará un trabajo dW. Es importante resaltar que el trabajo será positivo o negativo dependiendo de cómo se realice el desplazamiento en relación con la fuerza . El trabajo queda, entonces, expresado como:
Nótese que en el caso de que la fuerza no esté en la dirección del desplazamiento, sólo se debe multiplicar su componente en la dirección del movimiento.
Será considerado trabajo positivo el realizado por un agente externo al sistema carga-campo que ocasione un cambio de posición y negativo aquél que realice el campo.
CAMPO ELECTRICO
Campo eléctrico
Campo eléctrico producido por un conjunto de cargas puntuales. Se muestra en rosa la suma vectorial de los campos de las cargas individuales;
.
El campo eléctrico, en física, es un ente físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.[1] Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica dada por la siguiente ecuación:
En los modelos actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.[2]
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino a través de la ponderación de la fuerza actuante sobre alguna carga. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.
La unidad del campo eléctrico en el SI es newton por culombio, voltio por metro o, en unidades básicas, kg·m·s−3·A−1.
LEY DE COULOMB
Ley de Coulomb
La ley de Coulomb puede expresarse como:
La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
Desarrollo de la ley
Coulomb desarrolló la balanza de torsión con la que determinó las propiedades de la fuerza electrostática. Este instrumento consiste en una barra que cuelga de una fibra capaz de torcerse. Si la barra gira, la fibra tiende a regresarla a su posición original, con lo que conociendo la fuerza de torsión que la fibra ejerce sobre la barra, se puede determinar la fuerza ejercida en un punto de la barra.La ley de Coulomb tambien conocida como ley de cargas tiene que ver con las cargas electricas de un material, es decir , depende de sus cargas sean negativas o positivas.
Variación de la Fuerza de Coulomb en función de la distancia.
En la barra de la balanza, Coulomb colocó una pequeña esfera cargada y a continuación, a diferentes distancias, posicionó otra esfera también cargada. Luego midió la fuerza entre ellas observando el ángulo que giraba la barra.
Dichas mediciones permitieron determinar que:
La fuerza de interacción entre dos cargas y duplica su magnitud si alguna de las cargas dobla su valor, la triplica si alguna de las cargas aumenta su valor en un factor de tres, y así sucesivamente. Concluyó entonces que el valor de la fuerza era proporcional al producto de las cargas:
y
En consecuencia:
Si la distancia entre las cargas es , al duplicarla, la fuerza de interacción disminuye en un factor de 4 (2²); al triplicarla, disminuye en un factor de 9 (3²) y al cuadriplicar , la fuerza entre cargas disminuye en un factor de 16 (4²). En consecuencia, la fuerza de interacción entre dos cargas puntuales, es inversamente proporcional al cuadrado de la distancia:
Asociando ambas relaciones:
Finalmente, se introduce una constante de proporcionalidad para transformar la relación anterior en una igualdad:
CARGA ELECTRICA
Carga eléctrica
Interacciones entre cargas de igual y distinta naturaleza.
En física, la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas (pérdida o ganancia de electrones) que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética.
La carga eléctrica es de naturaleza discreta, fenómeno demostrado experimentalmente por Robert Millikan. Por razones históricas, a los electrones se les asignó carga negativa: –1, también expresada –e. Los protones tienen carga positiva: +1 o +e. A los quarks se les asigna carga fraccionaria: ±1/3 o ±2/3, aunque no se han podido observar libres en la naturaleza.
ELECTROESTATICA
Electrostática
La electrostática es la rama de la física que estudia los fenómenos eléctricos producidos por distribuciones de cargas estáticas, esto es, el campo electrostático de un cuerpo cargado.
Históricamente, la electrostática fue la rama del electromagnetismo que primero se desarrolló. Con la postulación de la Ley de Coulomb fue descrita y utilizada en experimentos de laboratorios a partir del siglo XVII, y ya en la segunda mitad del siglo XIX las leyes de Maxwell concluyeron definitivamente su estudio y explicación permitiendo demostrar cómo las leyes de la electrostática y las leyes que gobernaban los fenómenos magnéticos pueden ser estudiados en el mismo marco teórico denominado electromagnetismo
miércoles, 9 de septiembre de 2009
Sistema integrado o embebido
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Un sistema integrado, empotrado o embebido es un sistema informático de uso específico construido dentro de un dispositivo mayor. Los sistemas integrados se utilizan para usos muy diferentes a los usos generales a los que se suelen someter a las computadoras personales. En un sistema integrado la mayoría de los componentes se encuentran incluidos en la placa base (la tarjeta de vídeo, audio, módem, etc.).
Dos de las diferencias principales son el precio y el consumo. Puesto que los sistemas integrados se pueden fabricar por decenas de millares o por millones de unidades, una de las principales preocupaciones es reducir los costes. Los sistemas integrados suelen usar un procesador relativamente pequeño y una memoria pequeña para reducir los costes. Se enfrentan, sobre todo, al problema de que un fallo en un elemento implica la necesidad de reparar la placa íntegra.
Lentitud no significa que vayan a la velocidad del reloj. En general, se suele simplificar toda la arquitectura del ordenador o computadora para reducir los costes. Por ejemplo, los sistemas integrados emplean a menudo periféricos controlados por interfaces síncronos en serie, que son de diez a cientos de veces más lentos que los periféricos de un ordenador o computadora personal normal. Los primeros equipos integrados que se desarrollaron fueron elaborados por IBM en los años 1980.
Los programas de sistemas integrados se enfrentan normalmente a problemas de tiempo real.
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Un sistema integrado, empotrado o embebido es un sistema informático de uso específico construido dentro de un dispositivo mayor. Los sistemas integrados se utilizan para usos muy diferentes a los usos generales a los que se suelen someter a las computadoras personales. En un sistema integrado la mayoría de los componentes se encuentran incluidos en la placa base (la tarjeta de vídeo, audio, módem, etc.).
Dos de las diferencias principales son el precio y el consumo. Puesto que los sistemas integrados se pueden fabricar por decenas de millares o por millones de unidades, una de las principales preocupaciones es reducir los costes. Los sistemas integrados suelen usar un procesador relativamente pequeño y una memoria pequeña para reducir los costes. Se enfrentan, sobre todo, al problema de que un fallo en un elemento implica la necesidad de reparar la placa íntegra.
Lentitud no significa que vayan a la velocidad del reloj. En general, se suele simplificar toda la arquitectura del ordenador o computadora para reducir los costes. Por ejemplo, los sistemas integrados emplean a menudo periféricos controlados por interfaces síncronos en serie, que son de diez a cientos de veces más lentos que los periféricos de un ordenador o computadora personal normal. Los primeros equipos integrados que se desarrollaron fueron elaborados por IBM en los años 1980.
Los programas de sistemas integrados se enfrentan normalmente a problemas de tiempo real.
LENTES
Una lente es un medio transparente limitado por dos superficies curvas. Una onda incidente sufre dos refracciones al pasar a través de la lente.
Hay dos tipos de lentes: convergentes y divergentes.
En las lentes convergentes el foco imagen está a la derecha de la lente, f´ > 0.
En las lentes divergentes el foco imagen está a la izquierda de la lente, f´ < 0.
Las lentes convergentes son más gruesas por el centro que por los extremos, mientras que las divergentes son más gruesas por los extremos que por el centro.
Se define además la potencia de una lente como la inversa de su distancia focal imagen P=1/f´ y mide la mayor o menor convergencia de los rayos emergentes, a mayor potencia mayor convergencia de los rayos. La unidad de potencia de una lente es la dioptría, que se define como la potencia de una lente cuya distancia focal es de un
metro
Una lente es un medio transparente limitado por dos superficies curvas. Una onda incidente sufre dos refracciones al pasar a través de la lente.
Hay dos tipos de lentes: convergentes y divergentes.
En las lentes convergentes el foco imagen está a la derecha de la lente, f´ > 0.
En las lentes divergentes el foco imagen está a la izquierda de la lente, f´ < 0.
Las lentes convergentes son más gruesas por el centro que por los extremos, mientras que las divergentes son más gruesas por los extremos que por el centro.
Se define además la potencia de una lente como la inversa de su distancia focal imagen P=1/f´ y mide la mayor o menor convergencia de los rayos emergentes, a mayor potencia mayor convergencia de los rayos. La unidad de potencia de una lente es la dioptría, que se define como la potencia de una lente cuya distancia focal es de un
metro
REFRACCION DE LA LUZ
La refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Sólo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si éstos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad que experimenta la onda. El índice de refracción es precisamente la relación entre la velocidad de la onda en un medio de referencia (el vacío para las ondas electromagnéticas) y su velocidad en el medio de que se trate.
La refracción es el cambio de dirección que experimenta una onda al pasar de un medio material a otro. Sólo se produce si la onda incide oblicuamente sobre la superficie de separación de los dos medios y si éstos tienen índices de refracción distintos. La refracción se origina en el cambio de velocidad que experimenta la onda. El índice de refracción es precisamente la relación entre la velocidad de la onda en un medio de referencia (el vacío para las ondas electromagnéticas) y su velocidad en el medio de que se trate.
REFLEXION DE LA LUZ
Cuando un rayo de luz que se propaga a través de un medio homogéneo encuentra en su camino una superficie bien pulida, se refleja en ella siguiendo una serie de leyes. Este fenómeno es conocido como reflexión regular o especular.Se llama plano de incidencia al plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia (Ver applet). El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. El ángulo de reflexión es el que se forma entre el rayo reflejado y la misma normal.
Cuando un rayo de luz que se propaga a través de un medio homogéneo encuentra en su camino una superficie bien pulida, se refleja en ella siguiendo una serie de leyes. Este fenómeno es conocido como reflexión regular o especular.Se llama plano de incidencia al plano formado por el rayo incidente y la normal (es decir, la línea perpendicular a la superficie del medio) en el punto de incidencia (Ver applet). El ángulo de incidencia es el ángulo entre el rayo incidente y la normal. El ángulo de reflexión es el que se forma entre el rayo reflejado y la misma normal.
propagacion rectilinea de la luz
Propagación rectilínea de la luz
Todos hemos observado que las sombras producidas por focos pequeños resultan nítidas y reproducen el contorno de los objetos.
Cuando se trata de un foco extenso la sombra va acompañada de una zona de penumbra, que se explica por la propagación rectilínea de la luz:
Ningún foco puede ser perfectamente puntual, por lo tanto cualquier sombra irá acompañada de una zona de penumbra. Cuanto más extenso sea el foco luminoso en relación con el objeto, mayor será la zona de penumbra y menor la de sombra.
Esto que decimos ocurre si la luz se propaga en un medio homogéneo ya que si cambia de medio, por ejemplo del aire al vidrio, se produce un cambio de dirección que se conoce como refracción.
La propagación rectilínea de la luz se explica muy bien con el modelo corpuscular: las partículas de luz emitidas por el foco se mueven en un medio homogéneo con movimiento rectilíneo y uniforme ya que no hay fuerzas resultantes actuando sobre ellas.
La teoría ondulatoria también explica la propagación rectilínea de la luz ya que a medida que nos alejamos del foco luminoso, el frente de ondas se hace más plano:
Todos hemos observado que las sombras producidas por focos pequeños resultan nítidas y reproducen el contorno de los objetos.
Cuando se trata de un foco extenso la sombra va acompañada de una zona de penumbra, que se explica por la propagación rectilínea de la luz:
Ningún foco puede ser perfectamente puntual, por lo tanto cualquier sombra irá acompañada de una zona de penumbra. Cuanto más extenso sea el foco luminoso en relación con el objeto, mayor será la zona de penumbra y menor la de sombra.
Esto que decimos ocurre si la luz se propaga en un medio homogéneo ya que si cambia de medio, por ejemplo del aire al vidrio, se produce un cambio de dirección que se conoce como refracción.
La propagación rectilínea de la luz se explica muy bien con el modelo corpuscular: las partículas de luz emitidas por el foco se mueven en un medio homogéneo con movimiento rectilíneo y uniforme ya que no hay fuerzas resultantes actuando sobre ellas.
La teoría ondulatoria también explica la propagación rectilínea de la luz ya que a medida que nos alejamos del foco luminoso, el frente de ondas se hace más plano:
FISICA?
Física, ciencia que se ocupa de los componentes fundamentales del Universo, de las fuerzas que éstos ejercen entre sí y de los efectos de dichas fuerzas. En ocasiones la física moderna incorpora elementos de los tres aspectos mencionados, como ocurre con las leyes de simetría y conservación de la energía, el momento, la carga o la paridad.
Física, ciencia que se ocupa de los componentes fundamentales del Universo, de las fuerzas que éstos ejercen entre sí y de los efectos de dichas fuerzas. En ocasiones la física moderna incorpora elementos de los tres aspectos mencionados, como ocurre con las leyes de simetría y conservación de la energía, el momento, la carga o la paridad.
miércoles, 2 de septiembre de 2009
Esta diapositiva se encuentra en http://www.slideshare.net/JimmyDaniel/fsica-de-la-luz, te invitamos a verla
Caricatura a la velocidad de la luz
Si quieres ver nuestra caricatura publicada, ve a http://www.toondoo.com/, luego en el buscador escribe APRENDE... ¡Y LISTO!
martes, 1 de septiembre de 2009
Suscribirse a:
Entradas (Atom)